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Abstract 
 
The NAS Division at NASA Ames Research Center has developed a highly respected and widely used 
set of benchmarks for parallel computers.  These benchmarks are based on the needs of computational 
fluid dynamics applications, but appear to have relevance to other disciplines as well.  Unfortunately, 
NAS last published a collection of results for a wide range of systems in November of 1997.  Given 
the rapid level of change in the field of computers in general, and high performance parallel 
computing, it seemed appropriate to try and fill in some of the gaps.  As such, the major computational 
assets of the 
ARL-MSRC are being benchmarked, with the intent to publish the results on an ARL website.  While 
making these measurements, several observations and conclusions were drawn.  These observations 
and conclusions will be discussed at length in this document. 
 
1.  Introduction 
 
The NAS Division at NASA Ames Research Center has developed a highly respected and widely used 
set of benchmarks for parallel computers [1].  These benchmarks are based on the needs of 
computational fluid dynamics applications, but appear to have relevance to other disciplines as well.  
In [2] a subset of the NAS benchmarks (BT, CG, LU, and SP) were compared to the Linpack Parallel 
benchmark [3], Stream benchmark [4], and peak processor speed (in MFLOPS).  It was found that 
collectively the subset of the NAS benchmarks were the best predictors of the performance of 
applications in Computational Chemistry and Material Science, Climate/Weather/Ocean Modeling and 
Simulation, Computational Fluid Dynamics, and Computational Structural Mechanics when using 1-
1152 processors on 15 different system types from 6 different vendors.  Unfortunately, NAS has not 
published a collection of results for a wide range of systems since November of 1997.  Given the rapid 
level of change in the field of computers in general, and high performance parallel computing, it 
seemed appropriate to try and fill in some of the gaps. 
 
At the U.S. Army Research Laboratory – Major Shared Resource Center (ARL-MSRC), a number of 
moderate-to-large sized systems from SGI, IBM, and most recently Linux Networx are currently in 
use.  Additionally, three new systems from these vendors, including two 2000+ processor clusters are 
due to come on line in the next few months.  As such, it seemed as though a good starting point would 
be to benchmark the distinct major systems at the ARL-MSRC, with the intent to publish the results on 
an ARL website.  While making these measurements, several observations were drawn.  These 
observations and conclusions will be discussed at length in this document.  They are grouped into the 
following categories: 
 



• The effect that node configuration has on performance. 
• System usage policies and performance. 
• Fine grain parallelism, message passing latency, and performance. 

 
This project was made possible by a grant of computer time from the DoD High Performance 
Computing Modernization Program. 
 
2.  The effect that node configuration has on performance 
 
Almost all High Performance Computer (HPC) systems are now made with one or more levels of 
cache memory sitting between the processor and main memory.  The purpose of the cache memory is 
to bridge the performance gap between the bandwidth of main memory (including the bandwidth of 
the node’s interconnect) and the much greater ability of the processor to initiate load and store 
instructions.  Many of the systems are equipped with a prefetching mechanism that can improve a 
processor’s ability to stream data from main memory into the processor (usually via the caches).  It is 
important to remember that this mechanism is still limited by the available bandwidth, and may have 
additional limitations as well.  A more complete description of caches and prefetching can be found in 
[5] and [6]. 
Table 1 demonstrates how the available per processor memory bandwidth varies depending on the 
design of the system.  It should be noted that these numbers were not chosen to represent any one 
system, but are generally representative of the current state of the art. 
 
It should be noted that for systems with a relatively limited per node memory bandwidth, either adding 
support for prefetching and/or increasing the cache line size will be of limited benefit.  Furthermore, 
adding additional processors to the node may have limited effect on performance.  In fact, since a 
multiprocessor operating system kernel will in general incur a greater level of overhead, when going 
from a single processor node to a dual processor node, one might actually lose performance on a per 
node basis.  However, if the application was well tuned for large caches, and if the cache is large 
enough relative to the amount of work assigned to the processor, then the application may no longer be 
memory bandwidth limited.  A prime example of where this worked can be seen in Figure 1, where for 
larger numbers of processors the performance of the LU benchmark for the class B data set is quite 
impressive.  Unfortunately, as one can see in Figure 2, some applications will need more than 512 KB 
of cache if they are to ever reach this point.  In this figure, the delivered performance of the SGI 
Origin 3000 is very similar to that of the Pentium 4 cluster, even though the peak-speed on a per 
processor basis of the cluster 7.5 times greater!  The key difference appears to be that the SGI Origin 
processors are each equipped with 8 MB of cache, while on the Pentium 4 cluster, each processor is 
equipped with only 512 KB of cache.  Clearly, as equipped, problems represented by the CG 
benchmark would be best run on other platforms. 
 
There is also the question of when using nodes with more than one processor (generally referred to as 
SMP [Symmetric Multi-Processor] nodes, how many of the processors should be used?  This might 
seem to be a silly question, why would one not want to use all of the processors per node?  In fact, 
when running these benchmarks, an effort was made to run them under production conditions.  
Therefore, it is safe to assume that in many cases all of the processors of at least some nodes were 
being used.  Unfortunately, there are two draw backs to using all of the processors on a node.  The first 
is that one is competing with the operating system for the attention of at least one processor.  For finer 



grained applications (especially those written using Unified Parallel C [UPC], High Performance 
Fortran [HPF], OpenMP, and SHMEM), one may see improved performance when using N-1 
processors per node.  A related argument arises when overlapping communication with computation.  
In that case, the communication can put additional strain on both a processor and the memory system. 
 
Table 1.  Calculating the usable per processor memory bandwidth for a series of hypothetical systems 
representative of the current state of the art in system design. 
 

Per processor usable memory bandwidth for loads (MB/sec) 
assuming 

Number of 
processors 
per node 

Cache line 
size (bytes) 

Number of 
outstanding 

cache 
misses/prefetch 

events (per 
processor) 

a peak 
memory 
bandwidth 
of 600 
MB/sec (150 
NS latency - 
1200 
MB/sec limit 
on chip 
interface) 

a peak 
memory 
bandwidth 
of 1200 
MB/sec (200 
NS latency- 
1200 
MB/sec limit 
on chip 
interface) 

a peak 
memory 
bandwidth 
of 2400 
MB/sec (250 
NS latency - 
1200 
MB/sec limit 
on chip 
interface) 

a peak 
memory 
bandwidth 
of 4800 
MB/sec (300 
NS latency - 
1200 
MB/sec limit 
on chip 
interface) 

1 64 1 427 320 256 213 
1 64 2 600 640 512 427 
1 64 4 600 1200 1024 853 
1 64 8 600 1200 1200 1200 
1 64 16 600 1200 1200 1200 
1 128 1 600 640 512 427 
1 128 2 600 1200 1024 853 
1 128 4 600 1200 1200 1200 
1 128 8 600 1200 1200 1200 
1 128 16 600 1200 1200 1200 
2 64 1 300 320 256 213 
2 64 2 300 600 512 427 
2 64 4 300 600 1024 853 
2 64 8 300 600 1200 1200 
2 64 16 300 600 1200 1200 
4 64 1 150 300 256 213 
4 64 2 150 300 512 427 
4 64 4 150 300 600 853 
8 64 1 75 150 256 213 
8 64 2 75 150 300 427 

16 64 1 38 75 150 213 

 



Figure 1.  An example of limited memory bandwidth hurting the performance of the second processor 
on a two processor node until the amount of work per processor is reduced to the point that the 
working set fits in the 512 KB cache. 
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Figure 2.  An example of an application whose working set fits in an 8 MB cache, but fails to fit into a 
512 KB cache, even for larger numbers of processors. 
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3.  System usage policies and performance 
 
System usage polices can affect performance in a variety of ways.  This can range from being unable 
to schedule a job, or at least unable to get it scheduled in a reasonable amount of time, to having jobs 
fail shortly after they start to run, to the more common problem of poor/highly variable levels of 
performance.  Before continuing on, the author wishes to thank Thomas Kendall, Phillip Matthews, 
and the entire staff of the ARL-MSRC for their help in working out solutions to many of these 
problems. 
Based on this experience, it is recommended that all systems be configured in the following manner: 
 

• The default core dump size should be set to zero.  Most users do not want their core dumps and 
the process of dumping several (possibly hundreds of) Gigabytes of core can be very 
disruptive.  At the same time, the hard limit for the core dump size should be sufficiently large 
as to support the creation of a core dump when needed. 

• The queuing system should not by default initiate a core dump of a user’s application when the 
user requests that the job be terminated. 

• On some systems the default number for the maximum number of files that a job may have 
open may be insufficient to run MPI jobs on larger numbers of processors.  Since it may be 
difficult for the user to identify what is going wrong, it is suggested that the default value 
should be in the range of 1500-2000 files for systems with fewer than 1024 processors.  For 
larger systems running very large pure MPI jobs (as opposed to hybrid MPI/OpenMP jobs), 
one may need to increase the value of this limit to well beyond 2000 files. 

• The default queuing policy on systems with 2-4 processors per node should be to assign a job 
as many dedicated nodes as possible, even if the job did not request dedicated nodes, 
completely filling those nodes before filling up shared nodes. 

• The default queuing policy on systems with SMP nodes with 8 or more processors per node 
should be to assign a job as many dedicated nodes as possible, even if the job did not request 
dedicated nodes, using N-1 processors per node.  Any left over processes could then be 
mapped to partially filled shared nodes.  Only when the system runs out of partially filled 
shared nodes should the queuing system make use of the last processor per node.  Even then, 
one might argue in favor of leaving such processors for use by debug jobs, interactive jobs, 
post processing jobs, and high priority jobs that would otherwise be delayed. 

• The default memory usage policy on clusters of SMPs (this includes those running UNIX as 
well as those running Linux) should be tuned in such a manner as to reduce/eliminate the 
potential for paging.  At the same time, the hard limits should be set high enough that users 
running shared memory and hybrid runs are supported.  Provisions should also be made on at 
least some systems to support those running serial jobs with oversized memory requirements. 

 
Current DoD HPCMP policies discourage users from “stuffing” the queues with large numbers of 
jobs, especially if they are hard to schedule jobs.  However, sometimes the presence of these jobs is 
the best argument that there is a need to provide support for such jobs.  Furthermore, once the 
resources have been made available, if the job finishes after just a few hours (not to mention those runs 
that may take less than one hour), the site would face being penalized twice.  Once for the expansion 
factor, and a second time for the low utilization level while the system is being drained.  If the queues 
filled with some critical mass of jobs requesting similar resources, then at least the low utilization 
level can be amortized over a more reasonable level of work.  Additionally, one should be able to 



eliminate many of the periods of low utilization due to draining by running a significant number of 
hard to schedule jobs one after another.  This does not mean that the users should have carte blanche to 
stuff the queues with an unreasonable number of jobs.  As was discovered when submitting the runs 
for this study, stuffing queues to the extreme may inadvertently interfere with the normal functioning 
of the queuing system. 
 
Up until now, most of what has been discussed applied either solely to clusters of SMPs, or to both 
clusters of SMPs and to large SMPs such as the SGI Origin 3000.  However, in carrying out this study, 
it was observed that certain aspects of the SGI Origin 3000, and presumably other large SMPs, require 
special attention.  At the ARL-MSRC, most jobs run on the SGI Origin 3000 run in cpu sets 
(sometimes call processor sets).  In theory this gives these jobs sole access to the processors in their 
set.  In most cases this helps to reduce the variability in run time that the SGI Origins are notorious for.  
Even so, there continued to be a limited number of complaints concerning the variability in run time.  
The general wisdom was that for one reason or another the job was run outside of a processor set.  At 
the very least, such jobs are at an increased risk of moving around the system.  For an architecture that 
incorporates a Non Uniform Memory Architecture (NUMA), this will almost certainly increase the 
memory latency, while decreasing the usable memory bandwidth.  Under certain circumstances, jobs 
running outside of a processor are also subject to time sharing, which needless to say is highly 
undesirable when talking about parallelized applications. 
 
Recent measurements indicate that there are at least two other circumstances in which the performance 
of a job is subject to degradation, even when the job is run in a processor set.  It appears that if the 
system becomes overloaded (the number of active processes exceeds the number of processors), the 
performance of all of the jobs on the system can be adversely affected by a factor of two or more.  This 
can be difficult to deal with if any jobs are allowed to run outside of a processor set.  The load factor 
may appear to be reasonable, however if any of the processor sets are underutilized, the effect of 
running any jobs outside of a processor set in an attempt to improve the apparent utilization level can 
be quite unfortunate.  The second scenario involves jobs that use significantly more than “their fair 
share” of memory.  On most clusters, such jobs cannot even run.  However, one of the benefits of a 
large shared memory system is its support for this type of job.  Of course when taken to the extreme, 
there is a risk of either paging/or of jobs being unable to run due to a lack of available resources.  This 
is not what is being discussed here.  Rather, the problem appears to be that effectively the SGI Origins 
behave as though they have a multi-banked memory system.  If some of the banks fill up, the 
remaining jobs may inadvertently experience hot spots in the memory system.  While this author is 
well known for running such jobs from time to time, and is therefore reluctant to recommend that such 
jobs be banned, it does appear as though an increased level of prudence would be advisable in the 
future.  In order to better illustrate these points, Figure 3 shows a frequency count for the ratio of the 
worst run time versus the best run time for each of the benchmarks (Class W 1-64 processors), (Class 
A, B, C, and D 1-256 processors) on the ARL-MSRC’s 256 processor Pentium 4 cluster.  Similarly, 
Figure 4 is for the ARL-MSRC’s 1024 processor IBM SP with Power3 (NH2) processors (Class W 1-
64 processors), (Class B and C 1-529 processors), and (Class D 1-1024 processors).  Figure 5 is for the 
ARL-MSRC’s 512 processor SGI Origin 3000, although only a handful of runs were done using more 
than 256 processors.  On the ideal system, all of the values should be as close to 1.0 as possible. 



Figure 3.  The variability in run times on the 
Intel Pentium 4 cluster at the ARL-MSRC (0.1 
increment binning). 
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Figure 4.  The variability in run times on the 
IBM SP Power3 (NH2) at the ARL-MSRC (0.1 
increment binning). 
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Figure 5.  The variability in run times on the 
SGI Origin 3000 at the ARL-MSRC (0.1 
increment binning). 
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4. Fine grain parallelism, message passing latency, and performance 
 

One problem that appears to have received little attention in the literature, but which became painfully 
obvious when running these benchmarks is the question of what constitutes fine grain parallelism.  
Traditionally, programs that are successfully parallelized using PVM or MPI are considered to have a 
coarse grain of parallelism.  Those using HPF, UPC, or OpenMP have a fine grain of parallelism.  
Those parallelized using SHMEM most frequently fall somewhere in between.  However, with 
increasing processor speeds, many of the NPB runs for classes W, A, and B showed limited scalability 
past 128 processors (in some cases past 16-32 processors) on the newer systems.  This is a clear 
indication that these runs should no longer be considered to be coarse grained.  The fault is not with 
the runs, nor is it with the systems.  Rather, as everything got faster, the time between synchronization 
events has shrunk below the threshold for coarse grained runs.  This is a clear warning sign for those 
running programs parallelized several years ago.  It may be possible to run existing programs at the 



current levels of performance using ever fewer processors for some time to come.  However, if one 
expects to run the current problem sizes on the same or larger numbers of processors, then it may be 
time to revisit the strategy used to parallelize the programs.  This is most likely to be the case with 
programs parallelized using either a hybrid programming strategy or a software virtual shared memory 
(SHMEM, HPF, UPC, Linda, Co-Array Fortran, Global Arrays, etc.).  As processors get faster, it is 
easy to see how the bandwidth for interprocessor communication might be able to keep up.  However, 
the limits on message passing latency seem to be harder to avoid. 
 
 
7.  Conclusions 
 
So far the NPB benchmarks (classes W-D) have been run on four of the largest systems at the ARL-
MSRC.  The FT benchmark would not compile with the Intel compiler.  Experiments are underway to 
compare the performance of runs compiled with the Intel and PGI compilers on the Pentium 4 cluster. 
A number of observations and conclusions that were made while running these jobs have been 
discussed.  It is expected that additional systems will be benchmarked as time permits and that the 
results from all of these runs will be published on the web at a future date.  It is our hope that others 
will undertake similar studies at their sites, and similarly publish their results on the web. 
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  WASHINGTON DC 20375-5000 
 
1 AIR FORCE RSRCH LAB/DEHE 
  R PETERKIN 
  3550 ABERDEEN AVE SE 
  KIRTLAND AFB NM 87117-5776 
 
1 NAVAL RSRCH LAB 
  G HEBURN 
  RSCH OCEANOGRAPHER CNMOC 
  BLDG 1020 RM 178 
  STENNIS SPACE CTR MS 39529 
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1 AIR FORCE RSRCH LAB 
  INFORMATION DIR 
  R LINDERMAN 
  26 ELECTRONIC PKWY 
  ROME NY 13441-4514 
 
1 SPAWARSYSCEN (D4402) 
  R WASILAUSKY 
  BLDG 33 RM 0071A 
  53560 HULL ST 
  SAN DIEGO CA 92152-5001 
 
1 USAE WATERWAYS  
  EXPERIMENT ST 
  J HOLLAND 
  CEWES HV C 
  3909 HALLS FERRY RD 
  VICKSBURG MS 39180-6199 
 
1 US ARMY CRD&EC 
  B PERLMAN 
  AMSEL RD C2 
  FT MONMOUTH NJ 07703 
 
1 SPACE & NAVAL WARFARE SYS CTR 
  K BROMLEY 
  CODE D7305 BLDG 606 RM 325 
  53140 SYSTEMS ST 
  SAN DIEGO CA 92152-5001 
 
1 DEPT CHAIR 
  T TEZDUYAR 
  MECH ENGR & MTRL SCI 
  RICE UNIV MS 321 
  6100 MAIN ST 
  HOUSTON TX 77005 
 
1 ARMY HIGH PERFORMANCE 
  COMPUTING RSRCH CTR 
  B BRYAN 
  1200 WASHINGTON AVE 
  S MINNEAPOLIS MN 55415 
 
1 NAVAL CMD CNTRL & 
  OCEAN SURVEILENCE CTR 
  L PARNELL 
  HPC COORDINATOR 7 DIR 
  DOD DISTRIBUTED CTR 
  NCCOSC RDTE DIV D3603 
  49590 LASSING RD 
  SAN DIEGO CA 92152-6148 

1 ASSOCIATE DIR 
  S MOORE 
  INNOVATIVE CMPTG LAB 
  CMPTR SCI DEPT 
  1122 VOLUNTEER BLVD STE 203 
  KNOXVILLE TN 37996-3450 
 

ABERDEEN PROVING GROUND 
 

 16 DIR USARL 
  AMSRD ARL CI HC 
   D BROWN 
   J CLARKE 
   P CHUNG 
   J GOWENS 
   B HENZ 
   D HISLEY 
   T KENDALL 
   P MATTHEWS 
   R NAMBURU 
   C NIETUBICZ 
   R PRABHAKARAN 
   D PRESSEL 
   D SHIRES 
   K SMITH 
   R VALISETTY 
   C ZOLTANI 
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INTENTIONALLY LEFT BLANK. 
 
 


